Complete surfaces with non-positive extrinsic curvature in H3 and S3

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete surfaces with negative extrinsic curvature

N. V. Efimov [Efi64] proved that there is no complete, smooth surface in R with uniformly negative curvature. We extend this to isometric immersions in a 3-manifold with pinched curvature: if M has sectional curvature between two constants K2 and K3, then there exists K1 < min(K2, 0) such that M contains no smooth, complete immersed surface with curvature below K1. Optimal values of K1 are dete...

متن کامل

Surfaces in S3 and H3 via Spinors

We generalize the spinorial characterization of isometric immersions of surfaces in R given by T. Friedrich to surfaces in S and H. The main argument is the interpretation of the energy-momentum tensor associated with a special spinor field as a second fundamental form. It turns out that such a characterization of isometric immersions in terms of a special section of the spinor bundle also hold...

متن کامل

Non-linear ergodic theorems in complete non-positive curvature metric spaces

Hadamard (or complete $CAT(0)$) spaces are complete, non-positive curvature, metric spaces. Here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. Our results extend the standard non-linear ergodic theorems for non-expansive maps on real Hilbert spaces, to non-expansive maps on Ha...

متن کامل

Hypercubic Random Surfaces with Extrinsic Curvature

We analyze a model of hypercubic random surfaces with an extrinsic curvature term in the action. We find a first order phase transition at finite coupling separating a branched polymer from a stable flat phase.

متن کامل

non-linear ergodic theorems in complete non-positive curvature metric spaces

hadamard (or complete $cat(0)$) spaces are complete, non-positive curvature, metric spaces. here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. our results extend the standard non-linear ergodic theorems for non-expansive maps on real hilbert spaces, to non-expansive maps on had...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2015

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2015.05.049